El elogio de un político europeo a Netanyahu por las respuestas a Hamás, Irán y Hezbollah

Geert Wilders y Benjamín Netanyahu
Geert Wilders y Benjamín Netanyahu

Geert Wilders, líder del Partido por la Libertad en los Países Bajos, felicitó a Benjamín Netanyahu por las respuestas de Israel a los ataques de Hamás, Irán y Hezbollah.

El político holandés se reunió esta semana en Jerusalén con altos dirigentes israelíes, entre ellos Netanyahu, el presidente Isaac Herzog, el presidente de la Knesset, Amir Ohana, el ministro de Defensa, Israel Katz, el ministro de Asuntos Exteriores, Gideon Sa’ar, el ministro de Energía, Eli Cohen, y varios legisladores.

Wilders afirmó que el mandatario israelí hizo más para combatir el terrorismo desde el 7 de octubre de 2023 de lo que la Unión Europea logró en 70 años.

“Acabo de hablar con el primer ministro de Israel, Bibi Netanyahu, en Jerusalén, y le dije que en un año, al aplastar a Hamás, pulverizar a Hezbollah y debilitar significativamente a Irán, ha hecho más para combatir el terrorismo (internacional) que lo que ha hecho la UE en los últimos 70 años”, twitteó el líder derechista.

Un día antes de su visita, Wilders denunció a la Corte Penal Internacional por sus esfuerzos para procesar a Netanyahu. “Israel merece todo nuestro apoyo, porque también están luchando nuestra lucha contra las fuerzas malignas del terror de Hamás, la Jihad Islámica, Hezbollah y la República Islámica de Irán”, aseveró.

En octubre, después de que el Líder Supremo de Irán, el Ayatolá Ali Khamenei, amenazara a Israel, Wilders respondió: “Eres un psicópata, un maniaco peligroso, una persona enferma que perderá porque la lógica, la democracia y la libertad ganarán y siempre apoyaremos a Israel”.

 

Vía WIN / Enlace Judío

16 COMENTARIOS

  1. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  2. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  3. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  4. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  5. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  6. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  7. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  8. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  9. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  10. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  11. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  12. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  13. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

  14. DC Link is a connection between a rectifier and an inverter. It acts as energy storage device between two stages. DC Link circuits are found in converter circuits or variable frequency drives (VFD). DC link capacitors, energy storage components in these circuits, are crucial in electric vehicles, serving as buffer between different power sources and loads, protecting systems from spikes and EMI. They play a key role in inverters and converters, keep voltage stable and absorb current ripples for efficient operations of systems. Today, advanced power electronics technology has spread the use of DC to AC converters, and DC link circuits are found everywhere.

DEJAR UN COMENTARIO

Por favor ingrese su comentario!
Por favor ingrese su nombre aquí